Programming Collective Intelligence for Smart Web 2.0 Yazarı ile Bir Röportaj

0
FZ
Toby Segaran ile Bir Röportaj
Bruce Stewart
11/14/2007

Toby Segaran, O'Reilly'nin kısa süre önce çıkardığı Programming Collective Intelligence kitabının yazarıdır. Bu yeni kitabında Toby bizi makina öğrenme ve istatistik dünyasında bir gezintiye çıkarıyor ve kullanıcı verisinin yani "kolektif zekâ"nın oluşturduğu verinin üzerinden veri madenciliği yapmaktan yola çıkıp kullanıcı deneyimi, pazarlama, kişisel zevkler ve insan davranışı hakkında sonuçlara nasıl ulaşabileceğimizi gösteriyor.
Programming Collective Intelligence tamamen pratik bir kitap olup Internet üzerindeki insanların oluşturduğu muazzam miktardaki veriyi işleyen web uygulamalarının nasıl geliştirilebileceğini pratik örneklerle açıklıyor. Toby ile yeni kitabı hakkında konuştuk ve bu makina öğrenme tekniklerinin Web 2.0 dönemindeki önemini tartıştık.

O'Reilly: Tim O'Reilly, "Collective Intelligence" için "Web 2.0 uygulamaları geliştirmek için ilk pratik rehber" tanımlamasını kullanıyor. Siz bunu yazarken gerçekten de niyetiniz bu muydu? Sizin kitabınız Web 2.0 ile ilgiliolarak programcılara hangi araçları ve teknikleri sunuyor?

Segaran: Kitabın orjinal fikri insanlara makina öğrenme alanındaki fikirleri pratik olarak öğretmek idi. Genellikle makina öğrenme ile ilgili kitaplar bir hayli teoriktir ve pek çok insanın gerçek hayatla ilişkilendirmekte zorlandığı örnekler kullanırlar. Birkaç kişi ile bu fikrim üzerine konuştuktan sonra gördüm ki makina öğrenme algoritmalarını anlatmak için kullanılacak en güzel veri türü hali hazırda web üzerinde insanların oluşturduğu veri. Bu yüzden de kitaptaki örnekleri Internet uygulamalarının topladığı türden verilerle gerçekleştirmeye karar verdim. O'Reilly ile konuşup kitap fikrini onlara da açtığımda Web 2.0 ile bağlantılı bir şeyler yapma fikri hoşlarına gitti, böylece insanlara yeni teknikler öğretmek ve aynı anda da onları "makina öğrenme" terimi ile korkutmamak mümkün olabilecekti.

O'Reilly: Bu konularla ilgili epey teorik ve pek az pratik, hemen uygulanabilir bilgi var. Kolektif zekâ ile ilgili bir kitap yazarken karşılaştığın en büyük zorluklar nelerdi?

Segaran: En büyük zorluk insanların kavrayabilecekleri ve kendilerinin de elde edebilecekleri veri kümeleri bulmaktı. Kendi uygulamasını geliştiren biri kendi verisini toplayabilir ama kitabı okuyacak olanlar bir şekilde bir yerden o veriye ulaşabilmeliler. Arkadaşlarımla bu konu hakkında epey fikir alışverişinde bulundum ve onların kullandıkları sosyal web sitelerini, açık APIleri ve gerçekten hoşa gidebilecek çarpıcı örnekleri inceledim.

Diğer bir zorluk da tabii ki okurun denklemler ve matematikle çok da ilgilenmediği var sayımı ile algoritmaları açıklayabilmek idi. Teorik kitaplardan algoritmaları ve denklemleri alıp bunu sadece sözcükler ve resimlerle anlatmak için epey uğraştım diyebilirim.

O'Reilly: Biraz geriye çekilip bakalım. Acaba "Web 2.0" ve "kolektif zekâ" terimlerini nasıl tanımlarsın? Sence kolektif zekâ Web 2.0 ile ilgili teknolojilerde anahtar rolünde mi?

Segaran: Wow, açıkçası "Web 2.0 tanımı" tartışmasına katılmaktan korkuyorum. Sadece şunu diyebiliri ki Web 2.0'ın kullanıcı tarafından üretilen veri ile alakalı olduğu artık genel kabul görmüş halde. Bu verilerin bir araya getirilmesi yani kolektif zekâ mutlaka Web 2.0'ın da tanımında yer alıyor.

O'Reilly: Amazon.com uzunca bir süre kolektif zekâdan en iyi faydalanan lider şirket olarak kabul edilirdi. Ürün tavsiye mekanizmaları bu övgülerden en çok payı hak eden sistem olsa gerek. Sence Amazon bu alanda günümüzde nasıl, kolektif zekâ bakımından hala en iyi teknolojiyi kullanıyor mu ve lider mi?

Segaran: Amazon'un iç işleyişini bilmiyorum ama ancak bu ölçekte bir ürün tavsiye sistemi kurmuş olmaları gerçekten de takdir edilesi bir durum. Geliştirdikleri tavsiye sisteminin kalitesi yaptıkları satışlar ile ödüllendiriliyor.

O'Reilly: Bize bu anlattığın teknikleri günümüzde kullanan birkaç favori örneğini sıralayabilir misin?

Segaran: En başarılı örnekler arasında tabii ki Amazon ve Netflix'in tavsiye algoritmalarının yanı sıra Google'ın PageRank algoritması var. Ancak bu aralar benim çok daha ilginç bulduğum şey özelleşmiş problemler için bu tür algoritmaları kullanmaya başlayan küçük şirketler, mesela Collective Intellect firması finansal analiz için mesaj panolarından ve bloglardan veri çekip bunlar üzerinden veri madenciliği yapıyor. Bir başka güzel örnek ise Metaweb, bu şirket de kolektif zekânın gücünden nasıl faydalanılabileceğine dair pek çok seçenek sunuyor.

O'Reilly: Metaweb'ı bilmeyenler için ne yaptıklarını ve seni neden heyecanlandırdıklarını biraz anlatabilir misin?

Segaran: Metaweb, web için bir tür semantik veri deposu oluşturuyor ve bu sayede insanlar kolektif olarak şeyler ve o şeyler arasındaki ilişkileri gösteren çizgeler (graflar) inşa edebiliyorlar. Kısa süre önce Economist dergisinde bununla ilgili bir yazı çıktı. Detay isteyenler oraya başvurabilir.

O'Reilly: Neden Python bu tür işler için özellikle uygun?

Segaran: Python seçtim çünkü:
  • Bilim dünyasında da gittikçe yaygınlaşmaya başladı. Bu da NumPy ve MatPlotLib gibi harika ve başarılı kütüphanelerin geliştirilmesine yol açtı. Ben kitabı yazarken istediğim tüm kriterleri barındıran kütüphaneleri olan başka bir dil aklıma gelmedi.
  • Etkileşimli, yani programcı / okuyucu her bir fonksiyonu yazdıkça neler olup bittiğini o anda deneyebiliyor.
  • Kompakt bir sözdizimine sahip. Kitaba koyduğum kaynak kodun sayfalar dolusu olmasını istemiyordum.
  • Diğer dillere alışkın programcıların okumakta ve takip etmekte güçlük çekmeyecekleri bir dil.
O'Reilly: Kitap okurun Python bildiğini mi var sayıyor yoksa daha önce hiç Python dilini kullanmamış programcılar da faydalanabilir mi?

Segaran: Elimden geldiğince Python bilmeyenlere de hitap etmeye çalıştım. Sanırım belli ölçüde başarılı da oldum. Çeşitli bloglarda kitaptaki kodun Ruby, Lisp ve Java'ya çevrilmiş hallerini görebilirsiniz. Kodun yorum satırları iyi yazılmış ve açıklanmıştır dolayısı ile okur kodu yazıp çalıştırmasa bile neler olup bittiğini anlayabilir.

O'Reilly: Kullanıcı verisi toplarken istediğiniz veriye ek olarak epey bir çöplükle de karşılaşabilirsiniz. Belge ve spam filtreleme ne kadar önemli ve bunu yapmak için en iyi yaklaşımlar nelerdir? Bu konuya başlı başına bir bölüm ayırdığını görüyorum.

Segaran: Pek çok insan size "filtrelemenin" modern dünyadaki en önemli kavramlardan biri olduğunu söylecektir. Onlara katılıyorum. Klişe olduğunu biliyorum ama gerçekten de bilginin aşırı zamanın ise kısıtlı olduğu bir dünyada yaşıyoruz. Günde 500 kadar SPAM e-posta alıyorum ancak posta kutuma bunlardan en fazla bir ya da iki tanesi düşüyor. Dolayısı ile spam filtrelemenin başarılı olduğunu düşünüyorum. Günümüzde henüz başarılamamış olan şey ise Internet'te olan ve benim ilgimi çekebilecek bilgiyi otomatik olarak bulabilmek. Bu problemi halletmeye çalışan sistemler olduğunu biliyorum ve pek çoğunu da denedim ama hiçbirini yeterli bulmadım.

Genel olarak, milyarlarca belge ve veri noktası içinden gerekli bilgiyi bulmak ve işlemek bilgi emekçilerinin hala en çok vakit harcadıkları ve kafa patlattıkları konu. Bu alandaki algoritmaları iyileştirmek bizim verimliliğimizi ve etkinliğimizi çok artıracaktır.

O'Reilly: Okurlardan biri Programming Collective Intelligenc'ı "Web verisini Python aracılığı ile istatistik ve yapay zekâ yöntemleri ile işlemek hakkında bir kitap" olarak tanımlamıştı. Bu tanımlama sence doğru mu?

Segaran: Evet, sanırım doğru diyebilirim. Tabii "web verisi" pek çok farklı anlama gelebilir. Kitaptaki ana tema kullanıcı tarafından üretilen veri: eylemler, davranışlar, belirtilen ya da ima edilen tercihler. Ben insanlara sadece yöntemleri öğreten değil aynı zamanda kendi projelerinde kullanabilecekleri yeni yöntemler ve özellikler için de ilham verecek bir kitap yazmaya çalıştım.

Bruce Stewart serbest çalışan bir teknoloji yazarı ve editörüdür.

Çeviren: Emre Sevinç

Kaynak: http://www.oreillynet.com/pub/a/network/2007/11/14/an-interview-with-toby-segaran.html

Görüşler

0
FZ
Ne zamandan beri blogumda Programming Collective Intelligence kitabının bir eleştirisini yazmak istiyordum, belki yaptığım bu çeviri vesile olur (çeviri yapmak özgün eleştiri yazmaktan daha kolay tabii :)).

O zamana dek "machine learning" konuları ile ilgilenen herkese bu kitabı tavsiye ediyorum hararetle. Ağırlığınca altın değerinde ve röportajda belirtildiği gibi kesinlikle pratiğe yönelik ancak işin teorisini öğrenmek isteyenler için de gerekli yönlendirmeleri içeriyor.
0
FZ
Bu aralar FM'de "machine learning" ve "data mining" ile pek ilgilenen yok herhalde? ;-)
0
nec
Olmaz olur mu?

Röportaj zevkle okundu. Hemen kitabın pdf'i satın alındı; Android Developer Challenge projemiz için önemli bir kaynak olarak baş köşeye konuldu.

0
FZ
Zevkle okumanıza ve ardından üşenmeyip yorum yazmanıza sevindim. Programming Collective Intelligence gerçekten de çok değerli bir kaynak. Bu aralar ben de o kitaptan faydalanıp "machine learning" ile ilgili küçük bir proje geliştirmeye çalışıyorum.
Görüş belirtmek için giriş yapın...

İlgili Yazılar

Açık Akademi Yayınlarından Yeni kitap:Linux Sistem Yönetimi

anonim

O'reilly yayınlarından Mart 2007'de çıkan Linux System Administration kitabı Açık Akademi yayınları tarafından Linux Sistem yönetimi(Gerçek Hayattaki Linux Problemlerine Çözümler) adıyla Türkçe'ye kazandırılmıştır.

Kümesteki Kartal Neden Uçamaz? Türk Girişimcilerin Internet Serüvenleri

FZ

Nevzat, Amerika'daki yüksek lisans eğitimini yarıda bırakıp Türkiye'ye döndüğünde, kendisine gelecek vaad eden bankadaki işinden ayrılan Melih'le birlikte risk dolu bu projeye atıldı. Cem de diğer işlerini bırakıp teklif edilen ortaklığı kabul etti. Kendilerini bekleyen zor günleri hiç bilmiyorlardı. Ufak bir adımla yemeksepeti.com'un uzun yolculuğuna başladılar.

Burak ve Serkan, üniversite hayatları boyunca aldıkları eğitimi düşünmeyip mimarlık yapmaktan vazgeçtiler. Kurulu düzenlerini bozdular. Evden çalıştılar. Sıkıntı çektiler. Birlikte gittigidiyor.com adındaki hayallerinin peşine düştüler.

Google Hikayesi / Çağımızın En Yeni İş, Medya ve Teknoloji Başarısı

darkhunter

Orjinal adı Google Story olan ve Koridor Yayıncılık tarafından yayınlanan kitabın (çeviri: Gökçe Köse) yazarları David A. Vise ve Mark Malseed.

Kitabın içeriği ise şöyle :

Fazla mesai süründürür!

ErdemDemir

Geçen gün kitaplığımı düzenlerken, 10 yıl kadar önce okumuş olduğum Paul Lafargue'ın yazdığı "Tembellik Hakkı" kitabını yeniden okuma şansı buldum. Bir defa daha ezberimi bozan bu kitabı fazlamesai (!) camiasıyla paylaşmak istedim.

Paul Lafargue İnternet Arşivi

"Tembellik Hakkı"

Ve alıntılar, sadece fikir verebilmek için...

LIDS ile izinsiz girişlerin tespiti

FZ

LIDS (Linux Intrusion Detection System), sistemdeki önemli dosyaları koruyan ve tanımlanan kurallar çerçevesinde süreçleri(process) izleyen bir uygulamadır. Kendisine bir kural tanımlanır ve o kurala göre dosya/dizinleri korur. Örneğin, kendisine eklenen kurallara göre belirlenen süreçler kullanıcıların gözünden saklanabilir. Böylece ps komutunun sonucunda bu süreç, gözlerden saklandığı için ortaya çıkmayacaktır. LIDS bu tür işlemleri yapabilmesi için yazılımla birlikte sunulan kernel yama dosyasını kernele(çekirdek) yamamak gerekmektedir. Kural tanımlama(ekleme/çıkarma) işlemi yazılımın lidstools isimli araçları ile yapılabilmektedir.

Tacettin Karadeniz´in makalesinin devamına ileriseviye.org sitesinden erişebilirsiniz.