Nasil kesmeli

Nasıl kesmeli?

2
tongucyumruk

Geçtiğimiz hafta Festival of the Spoken Nerd ekibi tarafından düzenlenen An Evening of Unnecessary Detail başlıklı etkinliğe katıldım. Etkinlik boyunca dokuz farklı gösteri sergilendi fakat bunlardan bir tanesi özellikle diğerlerinden farklı olarak kendini gösteriyordu. Burada onunla ilgili birşeyler paylaşmak istedim.

Elinizde bir A4 kağıt olduğunu düşünün, ve bu kağıttan bir kare kesmeniz gerekiyor. Sadece elinizde bir kare kalması değil, aynı zamanda A4 kağıdın da ortasında kare şeklinde bir boşluk kalmasını hedefliyorsunuz. Nasıl kesersiniz? Bu sorunun cevabı oldukça basit. A4 kağıdı katlayıp aşağıda göründüğü şekilde keserseniz bir kare elde edebilirsiniz ve A4 kağıdınızda da o şekilde bir boşluk oluşur.

file

Harika! Peki ama ya benim gibi elinizin ayarı olmayan bir insansanız? O üç kenardan yapacağınız kesiklerin birbirini tutmasının imkanı olmadığını tahmin edebilirsiniz. Peki çare? Çare yapılacak kesik sayısını azaltmaktan geçiyor tabi ki. Kağıdı bir defa daha katlayarak aşağıdaki hale getirdiğinizde iki kesikle kurtulmanız mümkün.

file

Peki buradan nereye gideceğimizi tahmin edebilen var mı? Evet, eğer bunu buraya kadar getirebildiysek aşağıda gördüğünüz şekilde uygun bir katlama ile tek bir kesiğe de indirgeyebiliriz.

file

Evet, artık elinizin ayarı ne kadar bozuk olursa olsun bir kağıttan tek bir kesikle bir kare kesebilirsiniz. Aramızda derdi sadece kare kağıt kesmek olanlar burada okumayı bırakabilir. Bırakmayanlar ise bir şekilde matematikle ilgilenen insanlardır diye tahmin ediyorum. Etkinlikte bu sunumu yapan Katie Steckles da bu noktada durmamış ve şu soruya takılmış: peki kare dışında hangi şekilleri bu yöntemle, tek bir kesikle üretebiliriz? Araştırmaları kendisini Erik Demaine'in bu konudaki çalışmalarına ulaştırmış. Kısaca söylemek gerekirse, sorunun cevabı: Sadece düz kenarlardan oluşan her şekli bir kağıdı doğru şekilde katlayıp tek kesikte üretmek mümkün.

Bunun üzerine bu konu hakkında çalışmaya başlayan Katie Steckles İngiliz alfabesinin bütün harflerini bu şekilde üretmeyi başarmış. Çalışamasının sonuçlarını bu videoda görebilirsiniz.

Bence bu durum doğru koşullar (Katie Steckles'in durumunda kendisi gibi matematikçilerle rahat bir şekilde etkileşime girebileceği bir pub) sağlandığında basit bir "aaa ne ilginç" tepkisinin nasıl bilimsel bir çalışmaya dönebileceğinin güzel bir örneği. Gerek bilim, gerek teknoloji üretmek konusunda olsun doğru zamanda, doğru topluluk içinde bulunmanın insan hayatını kökten değiştirebileceğine yaşayarak şahit olmuş bir insanım.

Siz ne düşünüyorsunuz? Verimli bir üretim süreci için doğru topluluk içinde yer almak şart mı? Yoksa o "cevher" bir insanın içinde varsa bir şekilde ortaya çıkar mı?

Kapak görseli

Görüşler

0
FZ

Bunu seven sunu da sevdi: Between the Folds: An Ode to Origami (or the unlimited imagination of humanity) (Guzel insan Erik Demaine ve digerleri).

Topluluk meselesine gelince, insanin sosyal bir canli oldugunu kabul edersek, aksini iddia etmek zor geliyor bana. Kendi odasina kapanmis hummali sekilde cilgin seyler ureten ve hemen hic kimse ile iletisim kurmayan cevher profili gunumuzde olsa olsa idealize edilmis, romantik bir hayal olabilir.

0
fkoksal

Tüm işi bitirdikten sonra daha önce başkası tarafından yapıldığını öğrenmek hoş olmamış tabii: https://youtu.be/ZREp1mAPKTM?t=5m26s

Görüş belirtmek için giriş yapın...

İlgili Yazılar

Var Mısın Yok Musun: Bilgisayar Bize Nasıl Para Kazandırabilir?

FZ

Bu yazıda bilgisayarda simülasyon yaparak gerçek hayata dair kararlar vermenin basit ve güzel bir örneğini göstereceğim. Günümüzde bilgisayarlar çok hızlandığı için bilgisayar modelleri ve simülasyonları ile günlük yaşantımızdaki olaylara dair ne tür seçimlerde ne kadar kârlı çıkabileceğimizi belirlemek kolayca yapılabilir hale gelmiştir ve yine bu tür modelleri kullanarak pek çok konuya dair bilgi aktarmak / edinmek matematik teoremleri geliştirmeye yahut mevcut matematik teoremlerini birine anlatmaya kıyasla daha kolay olabilmektedir.

O halde başlayalım: Daha önce FM'de epey bir tartıştığımız meşhur Monty Hall problemine, nam-ı diğer 'Var mısın, yok musun?' yarışmasının olasılıkla ilişkisine tekrar dönmek istiyorum. Ama bu sefer uzun uzun sözel açıklamalar yahut Bayes teoremi ile matematiksel ispatlar yapmak yerine bu konunun bilgisayarda modelleme ve simülasyon aracılığı ile çok daha kolay anlaşılabileceğini iddia edecek ve bunu göstermeye çalışacağım.

Yarışmanın temel halini ve meseleyi hatırlatalım: 3 kapı var. Birinde 1 milyon YTL ödül var. Yarışmacı olarak nerede ne var bilmiyorsunuz:

Bilim 101

cadr

FM'deki ilk yazımla karşınızdayım, vatana millete hayırlı olsun. Bu yazıda sizlere geçenlerde şaşkınlıkla farkettiğim bir eksiklikten bahsedeceğim. Mevzu şudur, o kadar okul okuduk, üniversite gördük, bir kişi de çıkıp "arkadaş bak yeni bilgi böyle üretilir" diye bize göstermedi. Bir hal çaresine bakmak lazım. Buyrun konuşalım.

Efendim bir marangoz ahşap eşya üretir, bir sanatçı...

Bilgisayar Destekli Matematik Sistemi Maxima 5.17 Çıktı

FZ

Sembolik ve sayısal ifadeleri işleyebilen bir bilgisayarlı matematik sistemi Maxima'nın 5.17 numaralı sürümü duyuruldu. Türev, integral, Taylor serileri, Laplace dönüşümleri, adi diferansiyel denklemler, polinomlar, kümeler, listeler, vektörler, matrisler ve tensörlerle ilgili işlerinizi halletmenizde Maxima işlerinizi kolaylaştırır. Maxima ile yuvarlama hataları olmaksızın kesirli işlemler yapabilir, çok büyük tamsayıları fonksiyonlarınızda kullanabilirsiniz. Maxima matematiksel nesnelerinizi iki boyutlu ve üç boyutlu olarak grafiğe dökmenize de yardımcı olur.

Var mısın Yok musun!

sefalet

Halkımızın giderek zenginleşmesi ile birlikte televizyondaki yarışmalar da değişmeye başladı. Eskiden mutfak robotu veya yüz bakım seti için saatlerce telefonda bekleyen ve sunucuya binbir dil döken halkımız, artık milyarlar kazanınca bile mutsuz olur oldu. Umuyoruz ki, halkımızı sosyal ve ekonomik anlamda bu medeniyet seviyesine yükseltmekten sorumlu herkes müstahakkını alsın.

Kısa sosyal çözümlemeden sonra gelelim işin matematik ile olan ilişkisine.

e-kitap: Sezgisel Kümeler Kuramı

FZ

Prof. Dr. Ali Nesin'in 'Sezgisel Kümeler Kuramı [PDF]' e-kitap olarak http://www.matematikdunyasi.org/kitaplar.php adresinde yayımlandı.