İlgili Yazılar

Ian Stewart ile Mayın Tarlası Üstüne*

FZ

Bir bilgisayar oyununu analiz ederek 1 milyon dolar kazanmak pek sık rastlayabileceğiniz bir durum değildir ama kaderin garip bir cilvesi olarak artık böyle bir şansınız var. Fakat bu ödüle erişmeniz için konuyla ilgili tüm uzmanların yanılıyor olması ve çok zor olduğunu düşündükleri bir problemin aslında çok kolay çıkması gerekiyor. Bu yüzden yeni bir Corvette araba siparişi için acele etmeyin.

Söz konusu ödül şu anda Cambridge MA'da, iş adamı Landon T. Clay tarafından matematiksel bilginin geliştirilmesi ve yayılması için kurulan Clay Matematik Enstitüsü tarafından verilen milyon dolarlık yedi ödülden biri. Ödüle konu olan oyun, Microsoft Windows işletim sistemi ile gelen Mayın Tarlası oyunu. Bu oyundaki amacınız bir ızgara üzerinde gizlenmiş mayınları bilgisayarın size verdiği ipuçlarından faydalanarak bulmak. Oyunun ilişkili olduğu problem ise matematikte cevaplanmamış en önemli problemlerden biri olan 'P=NP?' sorusu.

Mayın Tarlası oyunu ile para ödüllü matematik problemi arasındaki bağlantı Birmingham Üniversitesi'nden Richard Kaye tarafından gösterildi ('Minesweeper is NP-complete', Mathematical Intelligencer cilt 22, sayı 4, 2000, sayfa 9-15). Heyecanlanmanıza gerek yok, oyunu kazanarak ödülü kazanamıyorsunuz. Milyon dolarlık ödülü hak etmeniz için Mayın Tarlasını devasa büyüklükte ızgaralar üzerinde oynarken başarılı olmanızı sağlayacak yöntemi bulmanız gerekiyor. Aslında böyle bir yöntemin olmadığını ispatlarsanız o zaman da size aynı ödülü veriyorlar.

Wolfram'ın 2, 3 Turing Makinasının Evrensel Olduğu İspatlandı

FZ

Dün yani 24 Ekim 2007 Çarşamba günü Stephen Wolfram'ın A New Kind of Science kitabında kurallarını verdiği ve evrenselliğinin ispatlanması karşılığında 25.000$ ödül koyduğu sistemin evrenselliğinin ispatlandığı duyuruldu. Birmingham, İngiltere'de bilgisayar bilimleri okuyan 20 yaşındaki Alex Smith'in 40 sayfalık ispatı ile ödülü kazanmayı hak etti.

The Simpsons ve Fermat Teoremi (Yanlış Mı?)

FZ

cember.net'in bilişim forumunda gördüğüm ve Volkan Özçelik tarafından yazılmış eğlenceli bir mesajı (ufak tefek editöryel müdahale ile) paylaşmadan duramadım: Fermat'nın son teoremine göre a^n + b^n = c^n eşitliği 2den büyük hiçbir tamsayı için doğru değildir. Bu teoremin doğruluğu çok yakın bir geçmişte ispatlandı. Yani yıllarca matematikçilere karın ağrıları çektiren bir teorem bu. Ancak

1782^12 + 1841^12 = 1922^12

ediyor (en azından Homer Simpson öyle düşünüyor!)

Var Mısın Yok Musun: Bilgisayar Bize Nasıl Para Kazandırabilir?

FZ

Bu yazıda bilgisayarda simülasyon yaparak gerçek hayata dair kararlar vermenin basit ve güzel bir örneğini göstereceğim. Günümüzde bilgisayarlar çok hızlandığı için bilgisayar modelleri ve simülasyonları ile günlük yaşantımızdaki olaylara dair ne tür seçimlerde ne kadar kârlı çıkabileceğimizi belirlemek kolayca yapılabilir hale gelmiştir ve yine bu tür modelleri kullanarak pek çok konuya dair bilgi aktarmak / edinmek matematik teoremleri geliştirmeye yahut mevcut matematik teoremlerini birine anlatmaya kıyasla daha kolay olabilmektedir.

O halde başlayalım: Daha önce FM'de epey bir tartıştığımız meşhur Monty Hall problemine, nam-ı diğer 'Var mısın, yok musun?' yarışmasının olasılıkla ilişkisine tekrar dönmek istiyorum. Ama bu sefer uzun uzun sözel açıklamalar yahut Bayes teoremi ile matematiksel ispatlar yapmak yerine bu konunun bilgisayarda modelleme ve simülasyon aracılığı ile çok daha kolay anlaşılabileceğini iddia edecek ve bunu göstermeye çalışacağım.

Yarışmanın temel halini ve meseleyi hatırlatalım: 3 kapı var. Birinde 1 milyon YTL ödül var. Yarışmacı olarak nerede ne var bilmiyorsunuz:

Matematik dosyası kapandı, artık NetMatematik var!

euler

Eski adıyla Matematik Dosyası, yeni adı ve tasarımıyla NetMatematik kısa bir aradan sonra bir süre önce tekrar yayına girdi.

Matematik ve matematiğin tarihi, matematikçiler hakkında bilgi edinebilir, matematiğin çeşitli alanlarında özgün makalelere ulaşabilir, gelişmeleri takip edebilirsiniz.

Matematiğe gönül vermiş insanları aramızda görmekten memnun olacağımızı belirtmekte fayda görüyorum.